

0040-4039(94)01874-X

INDOLIZIDINE AND QUINOLIZIDINE RING FORMATION IN THE SET-PHOTOCHEMISTRY OF a-SILYLAMINES

Susan E. Hoegy and Patrick S. Mariano* Department of Chemistry and Biochemistry University of Maryland, College Park, MD 20742

Abstract. The scope and limitations of indolizidine and quinolizidine ring forming, SET-photoinduced, a-amino radical cyclization reactions were explored.

We recently reported the results of a reasonably extensive study of the mechanistic and synthetic aspects of SET-photoinduced, a-amino radical cyclization reactions of tethered α -silylamine-olefin systems.¹,² In that effort, we found that $silylamino \alpha, \beta-unsaturated \; esters \; and \; ketones \; 1 \; undergo \; SET-photosenstitized$ **reactions under anaerobic conditions to produce N-heterocyclic products, 4 by a route** involving formation and cyclization of intermediate α -amino radicals 3. Exploration of **the scope of this process demonstrated that reaction efficiencies are dependent on the (1) size of the forming ring (eg., 5. 6 > 7). (2) reaction conditions (eg., 02-free solutions and low SET-sensitizer concentrations), and (3) nature of the olefin-tether (EWGsubstitution required). In terms of the last requirement, we observed that related silylamino alkenes 2 are not transformed to cyclization products 5 under conditions** where enone and ester analogs 1 react smoothly. For example, 9,10dicyanoanthracene (DCA) sensitized irradiation (N₂, MeCN, λ > 320 nm) of 2 (R = Et, n = **2) does not result in formation of the piperidine 5 (R = Et, n = 2). Rather, the dealkylation product 6 is formed mainly. These observations were explained in terms** of the slow cyclization rate for α -amino radicals 3 (R = alkyl) (vs. their oxidation by **DCA to iminium cations)3 when the olefin-tether lacks activating, EWG-substitution.** This parallels the conclusions of an early study by Padwa⁴ in which it was shown that α -amino radicals, unlike their α -amido analogs,⁵ do not efficiently add **intramolecularly to simple-alkenes.**

8319

In light of these observations, we were intrigued by the reports by Pandey and his coworkers that primary⁶ and secondary⁷ α -amino radicals, derived by SET**photosensitized irradiations of simple alkene-silylamine systems, participate in high yielding cyclization reactions. Included in the examples provided by Pandey are the 1,4-dicyanonaphthalene (DCN) sensitized conversions of amines 7 and 9 to products 8 and 10, respectively. These processes were reported to occur efficiently upon** irradiation $(\lambda > 240 \text{ nm})$ of non-deoxygenated 2-propanol solutions containing the **amines and DCN.**

To gain insight into the source of these disparate results, we have subjected the pentenyl-pyrrolidine 97 and related amino-enones 11 **and 12 to photochemical study. The amino-enones 11 and 12 were prepared by the sequences shown in Scheme 1** which advantageously use the Beak⁸ method to install the α -TMS function.

Scheme 1.

Consistent, with our earlier findings.1 we observe that DCA-sensitized irradiation $(\lambda > 320 \text{ nm}, \text{MeCN}, \text{N2})$ of the pyrrolidine 11 leads to a separable mixture of the **indolizidines 13 (42%) and 15 (43%). In addition, photocyclization of the piperidine 12 occurs efficiently under these conditions to produce the quinolizidines, 14 (81%) and 15 (18%). Stereochemical assignments to 14 and 16 are based on their** contrasting $1H$ and $13C$ NMR properties, comparisons of these with those of the structural analogs, epilupinine and lupinine, 9 and the chemical transformation of the **major epimer 14 to epilupinine 17 (Scheme 2).**

Scheme 2.

In contrast, DCA-sensitized irradiation of the pentenyl-pyrrolidine 9 fails to promote formation of the indolizidine 10. Instead, a mixture of unidentifiable products is obtained. Moreover, when 9 is subjected to DCN-sensitized irradiation under conditions which match (albeit in our hands) those reported by Pandey^{6,7} (non**deoxygenated 2-propanol), it is efficiently (75%) converted to the pyrrolidinone 19.10**

The current results are consistent with those found in our earlier studies^{1,2} of α -silylamine SET-photochemistry. The high yielding photocylization reactions of the $silyl amino-enones$ are a result of the high reactivity of efficiently formed, α -amino **radical intermediates in intramolecular additions to tethered, EWG-substituted** olefins.¹¹ That this process occurs slowly in systems containing "unactivated" (i.e., electron rich) olefins follows from Padwa's original work⁴ and our efforts,¹ and is in

accord with electronic considerations. As a consequence, the α -amino radical formed **in the photoreaction of 9 by an SET-desilylation sequence undergoes alternative processes involving oxidation either by DCA (in a deoxygenated solution) to produce an iminium cation3 or by 02 (in a non-deoxygenated solution) to yield a hydroperoxy radical 18. The latter species serves as a precursor to the pyrrolidinone 19 while the former intermediate should be sufficiently labile to prevent its detection.**

When taken together, the above and earlier results emphasize that the application of SET-photoinduced, a-amino radical cyclization reactions to Nheterocyclic synthesis appears restricted to α -silylamine substrates that contain EWG**substituted alkene tethers. They also bring into question the results reported by Pandey and his coworkers.**

I Acknowledgment.

This study was supported by a grant from the NIH (GM-27251).

References.

- **(1) Jeon, Y.T.; Lee, C-P.; Mariano, P.S. Z. Am. Chem. Sot., 1991,113, 8847.**
- **(2) Yoon, U.C.; Mariano. P.S.** *Act. Chem. Res., 1992.25, 233.*
- **(3) Zhang, X.; Jung, Y.S.; Mariano, P.S.; Fox, M-A.: Martin, P.S.; Merkert, J.** *Tetrahedron Lett.,* **1993.34, 5239.**
- **(4) Padwa, A.; Nimmesgern, H.; Wong, G.S.K. Z. Org.** *Chem.. 1985.50. 5620.*
- *(5)* **Choi. J-K.: Hart, D.J.** *Terrahedron. 1985.41. 3959.*
- *(6)* **Pandey, G.; Kumaraswamy, G.; Bhalerao, U.T.** *Tetrahedron Lett., 1989.30, 6059;* **Pandey, G.; Reddy. G.D.; Kumaraswamy, G.** *Tetrahedron, 1994.50,* **8185.**
- **(7) Pandey, G.; Reddy, G.D.** *Tetrahedron Lett., 1992.33. 6533.*
- *(8)* **Beak, P.; Lee, W.K. J.** *Org. Chem.. 1993,58,* **1109.**
- (9) Grieco, P.A.; Parker, D.J. J. Org. Chem., 1988, 53, 3325; Tufariello, J.J.; Tegler, J.J. *Tetrahedron Lett.,* **1976, 4037.**
- **(10) Prepared from 2-pyrrolidinone by reaction with NaH and 5-bromapentene in MeCN.**
- **(11) (a) This reactivity (i.e. p-addition to enones) even allows reversal of the normal selectivity for 5-exo over 6-endo radical cyclizations (ref. 1 lb): (b) Khim. S.K.; Mariano, P.S.** *Tetrahedron Left.. 1994.35, 999.*

(Received in USA 20 *JULY 1994, revised* **7** *September 1994; accepted 15 September* 1994)

8322